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Abstract: Problem Statement: The four-parameter exponentiated generalized Lomax distribution has been 
introduced. The uniformly minimum variance unbiased and maximum likelihood estimation methods are the 
way to estimate the parameters of the distribution. In this study we explore and compare the performance of 
the uniformly minimum variance unbiased and maximum likelihood estimators of the reliability function 
R(t)=P(X>t) and P=P(X>Y) for the four-parameter exponentiated generalized Lomax distribution. Approach: A 
new technique of obtaining these parametric functions is introduced in which major role is played by the 
powers of the parameter(s) and the functional forms of the parametric functions to be estimated are not 
needed.  We explore the performance of these estimators numerically under varying conditions.  
  
Keywords: four-parameter exponentiated generalized Lomax distribution, uniformly minimum variance 
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1. INTRODUCTION 
 The reliability function R(t) is defined 
as the probability of failure-free operation until 
time t. Thus, if the random variable (rv) X 
denotes the lifetime of an item, then R(t). 
Another measure of reliability under stress-
strength set-up is the probability P(X>Y), which 
represents the reliability of an item of random 
strength X subject to random stress Y. Many 
researchers have considered the problems of 
estimation of R(t) and ‘P’ for various lifetime 
distributions, like, exponential, gamma, 
Weibull, half-normal, Maxwell, Rayleigh, Burr 
and others. For a brief review, one may refer to 
[14], [11], [16], [3], [18], [6], [19], [5] and others. 
 Statistical distributions are very useful 
in describing and predicting real world 
phenomena. Although many distributions have 
been developed, there are always rooms for 
developing distributions which are either more 
flexible or for fitting specific real world 
scenarios. As a result, many new distributions 
have been developed and studied. For 
example, [8] proposed a generalization of the 
standard exponential distribution, called the 
exponentiated exponential distribution, defined 
by the cumulative distribution function (cdf) 
 ( ) -λx α-1F x;α,λ =(1-e ) ; x, α, λ>0.   
This equation is simply the αth power of the 
standard exponential cdf. For a full discussion 
and some of its mathematical properties, see 
[9].  
 [8] introduced exponentiated 
generalized class of distributions by taking a 
continuous cdf G(x), say, as 

 ( ) { }β α
F x;α,β = 1- 1-G(x) , 

   
(1.1)                                        

where α>0 and β>0 are two additional shape 
parameters and G(x) is known as the baseline 

distribution. The probability density function 
(pdf) of the new class has the form 
 

( ) { } { }β-1 β α
f x;α,β =αβ 1-G(x) 1- 1-G(x) g(x), 

       
(1.2)                              

where g(x) is the pdf corresponding to the cdf 
G(x). 
  The exponentiated generalized family 
of distributions (1.2) allows for greater flexibility 
of its tails and can be widely applied in many 
areas of engineering and biology and it 
extends several well-known distributions in the 
literature. Note that even if g(x) is a symmetric 
distribution, the distribution f(x) will not be a 
symmetric distribution. The two extra 
parameters in (1.2) can control both tail 
weights and possibly adding entropy to the 
center of the exponentiated generalized family 
of distributions. In particular, if g(x) and G(x) 
represent the pdf and cdf, respectively, of two 
parameter Lomax distribution, then 
 ( ) [ ]-(λ+1)g x;λ,δ =λδ 1+δx                  (1.3)

                                      

 
and 
 ( ) [ ]-λG x;λ,δ =1- 1+δx .                      (1.4)                                                                                
From (1.1), (1.2), (1.3) and (1.4), we get

             

( ) { }
{ }

β-1

α-1β

-(λ+1) -λf x;α,β,λ,δ =αβλδ(1+δx) (1+δx)

-λ                         1- (1+δx) ;x,α,β, λ,δ>0 
⋅  
   

(1.5) 

and

 ( ) { }
αβ-λF x;α,β,λ,δ = 1- (1+δx) ;x,α,β,λ,δ>0, 

 
 

     (1.6)                                                 

where ( )f x;α,β,λ,δ  and ( )F x;α,β,λ,δ ,  

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014                               1172 
ISSN 2229-5518 
 

IJSER © 2014 
http://www.ijser.org 

respectively, represents the pdf and cdf of 
exponentiated generalized Lomax distribution. 
 The graphs of exponentiated 
generalized Lomax distribution for various 
values of α, β, λ and δ are given in Fig.1. The 
figure shows that the density function can take 
different shapes for different values of these 
parameters. 

 

Fig. 1: Curves of f(x;α,β,λ,δ).  
Hazard function: The hazard function of 
exponentiated exponential-Weibull distribution 
using Equations (1.5) and (1.6) is given by 

{ }
{ }

{ }

β-1

αβ

α-1β

-(λ+1) -λαβλδ(1+δx) (1+δx)
h(x;α,β,λ,δ)=

-λ1- 1- (1+δx)

-λ                    1- (1+δx) ; x, α, β, λ , δ>0.

 
 
 

 
⋅  
   

 (1.7)      

Hazard functions for various values of α, β, λ 
and δ are given in Fig.2.  

 

 Fig.2: Curves of Hazard function. 

 The purpose of the present paper is 
manifold. We consider exponentiated 
generalized Lomax distribution. The UMVUES 
and MLES of the reliability function R(t) and ‘P’ 
are derived for the complete sample case. In 
order to obtain these estimators, the major role 
is played by the UMVUES and MLES of the 
powers of parameter(s) and the functional 
forms of the parametric functions to be 
estimated are not needed. Simulation study is 
carried out to investigate the performances of 
these estimators. A comparative study of 
different methods of estimation is done. 
 In Section 2, we derive the UMVUES 
of the reliability function R(t) and ‘P’ assuming 
α to be unknown but other parameters are 
known. In Section 3, we obtain MLES of the 
reliability function R(t) and ‘P’, when all the 
parameters are unknown. In Section 4, 
simulation study is performed. In Section 5, 
discussion is made. Finally, in Section 6, 
conclusions are given. 

2. UMVUES OF THE POWERS OF α, R(t) 
AND ‘P’  WHEN β, λ AND δ ARE     
KNOWN 

 Let 1 2 nX , X , ..., X  be a random sample of 
size n from (1.5). 

Lemma 1: Let { }βn

i
i=1

-λS=- 1- (1+δX ) . 
 
 

∑  Then, S 

is complete and sufficient for the distribution 
given at (1.5). Moreover, the pdf of S is  

n
n-1 -αsαh(s;α)= s e ; 0<s< .

(n)
∞

Γ
           

Proof: From (1.5), the joint pdf of 1 2 nX , X , ..., X  
is  

{ }
{ }

( )

n
1 2 n

β-1

n i i

β
i=1

i

h(x ,x ,...,x ;α,β,λ,δ)=(αβλδ)

-(λ+1) -λ(1+δX ) (1+δX )
    exp -αs .

-λ1- (1+δX )

 
 

⋅  
 
  

∏
(2.1)    

It follows from (2.1) and Fishers-Neyman 
factorization theorem [see Rohatgi (1976, p. 
341)] that T is sufficient for the ( )f x;α, ,λ, .β δ

 
It is 

easy to see that the rv { }β-λV=-2αln 1- (1+δX)
 
 
 
 

 

follows 2χ (2)  distribution. Thus, from the well-
known additive property of Chi-square 
distribution [see [12]], 

{ }βn -λ-2αS=-2α ln 1- (1+δX )i
i=1

 
 ∑  
 

 is a ( )
2χ 2n  rv 

and the result follows. Since the distribution of 
T belongs to exponential family, it is also 
complete [see [15]]. 

The following theorem provides the 
UMVUES of the powers of α. 
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Theorem 1: For  q (- , )∈ ∞ ∞ , the UMVUE of qα  
is  

-q
q

Γ(n) S ; q<n,
ˆ Γ(n-q)α =

0 ; otherwise.






 

Proof: From (2.2), 
  ( )-q 2 -q

(2n)E 2αS =E[χ ]  

                            q

Γ(n-q)= ; q<n,
2Γ(n)

  

or,   

  -q qΓ(n)E S =α .
Γ(n-q)

  
  
  

 

Hence, the theorem follows from Lehmann-
Scheffé Theorem [see [15]]. 

In the following lemma, we provide the 
UMVUE of the sampled pdf (1.5) at specified 
point ‘x’. 
Lemma 2: The UMVUE of f(x;α,β,λ,δ)  at a 
specified point ‘x’ is 

{ }( )
{ } { }( )

{ }( )

1β-λ -(λ+1)

n-2β-1 β-λ 1 -λ

β-λ

f̂(x;α,β,λ,δ)=(n-1)βλδ 1- (1+δX) (1+δX)

            (1+δX) 1+S ln 1- (1+δX)

                                        ;-S<ln 1- (1+δX) ,

−

− 
  

 

Proof: We can write (1.5) as 

{ }
{ }

{ }

1β

β-1

iβ

i+1

i=1

-λf(x;α,β,λ,δ)=βλδ 1- (1+δx)

-(λ+1) -λ             (1+δx) (1+δx)

-λln 1- (1+δx)
             α .

i!

−

∞

 
 
 

⋅

  
  

  ⋅∑               

(2.2)               

Using (2.2), Theorem 1 and Lemma 1 of 
Chaturvedi and Tomer (2002), UMVUE of 
f(x;α,β,λ,δ)  at a specified point ‘x’ is 

{ }

{ }
{ }

1β

iβ

β-1
i+1

i=1

-(λ+1)-λf̂(x;α,β,λ,δ)=βλδ 1- (1+δx) (1+δx)

-λln 1- (1+δx)
-λ ˆ        (1+δx) α

i!

−

∞

 
 
 

  
  

  ⋅ ∑

           

                  

{ }
{ } { }

{ }

1β
1

n-2β-1 β
1

β

-(λ+1)-λ=(n-1)βλδS 1- (1+δX) (1+δX)

-λ -λ  (1+δX) 1+S ln 1- (1+δX)

-λ                                   ;  -S<ln 1- (1+δX)

−
−

−

 
 
 

  
⋅   

  
 
 
 

 and the lemma holds. 

 In the following theorem, we obtain 
UMVUE of R(t). 
Theorem 2: The UMVUE of R(t) is given by 

( ) { }
{ }

n-1β
1

β

-λR̂ t =1 1+S ln 1- (1+δt)

-λ                     ;  -S<ln 1- (1+δX) ,

−  
−   

  
 
 
 

 

Proof: Let us consider the expected value of 

the integral 
t

f̂(x;α,β,λ,δ)dx,
∞

∫   with respect to S, 

i.e., 

0 t

f̂(x;α,β,λ,δ)dx h(s;α)ds
∞ ∞  
 
  
∫ ∫  

       S
t

ˆ= [E {f(x;α,β,λ,δ)}]dx
∞

∫  

       
t

= f(x;α,β,λ,δ)dx
∞

∫                                                                     

      =R(t).                                  (2.3)                                                                        
We conclude from (2.3) that the UMVUE of 
R(t) can be obtained simply by integrating 
f̂(x;α,β,λ,δ)  from t to ∞. Thus, from Lemma 2, 

{ }
{ } { }

1β
1

t
n-2β-1 β

1

-(λ+1)-λR̂(t)=(n-1)Sβλδ 1- (1+δX) (1+δX)

-λ -λ       (1+δX) dx 1+S ln 1- (1+δX)

−∞
−

−

 
 
 

  
⋅   

  

∫
         

      
{ }β1 -λ

0
n-2

S ln 1- (1+δt)

=(n-1) (1+z) dz
−  

 
 

∫       

and the theorem follows. 
 Let X and Y be two independent rvs 
following the families of distributions 

1 1 1 1 1f (x;α ,β ,λ ,δ ) and 2 2 2 2 2f (y;α ,β ,λ ,δ ),  
respectively. We assume that α1  and α2  are 
unknown but 1 2 1 2 1 2β , β , λ , λ , δ and δ are known. 
Let X , X ,..., X1 2 n  be a random sample of size 
n from 1 1 1 1 1f (x;α ,β ,λ ,δ ) and Y , Y ,…, Y1 2 m  be a 
random sample of size m from 2 2 2 2 2f (y;α ,β ,λ ,δ ).  

Let us denote by { } 1βn
1

1 i
i=1

-λS=- ln 1- (1+δ x )
 
 
  

∑
 
and 

{ } 1βn
1

1 i
i=1

-λS=- ln 1- (1+δ x )
 
 
  

∑ . In what follows, we 

In what follows, we obtain the UMVUE 
of ‘P’. 

Theorem 3: The UMVUE of ‘P’ is 
given by 
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{ }

n-1
1λ11

1/β -1/λ1 -Tv1 2 2

0 2

1- 11/βm-2 1 -S 11
1 2

1-(m-1) 1+S ln 1 1 [1 {(1 e ) } ]

                                                      (1-v) dv;δ 1- (1-e ) >δ 1- (1

P̂=
β−

−

−λ− −

    δ   − − − −∫     δ       
 

⋅  
  

{ }

221/ 1/1 S2 1 1T ln 1 1 [1 {(1 e ) } ] n-1
1 1λ1

1/β -1/λ1 -Tv1 2 2

0 2

1- 21/β-T 2

1-(m-1) 1+S ln 1 1 [1 {(1 e ) } ]

               

-e ) .

β −λ   δ β − λ− −− − − − −    δ β    −    −

−λ

    δ   − − − −∫     δ       

 
 
  

{ } { }
1 1- -1 21/β 1/βm-2 1 -S 1 -T1 2

1 2          (1-v) dv;δ 1- (1-e ) δ 1- (1-e ) ,
− −λ λ− −   

⋅ <   
      















 

Proof: From the arguments similar to those 
adopted in proving Theorem 1, it can be shown 
that the UMVUE of ‘P’ is given by 

1 1 1 1 1 2 2 2 2 2
y=0 x=y

ˆ ˆP̂= f (x;α ,β ,λ ,δ )f (y; α ,β ,λ ,δ )dxdy
∞ ∞

∫ ∫             

   1 1 1 1 1 2 2 2 2 2
y=0

ˆˆ= R (y;α ,β ,λ ,δ )f (y;α ,β ,λ ,δ )dy
∞

∫                                                                                                                                                  

                          

{ }
{ } { }

{ } { }

1 1- -1/β 1 1/β 21 -S 1 -T1 2
1 2

1

2 2

1
2 2 2

n-1
maxδ 1- (1-e ) , δ 1- (1-e )

β
1 1

1
y=0

1β β
12 2

2 2

=1-(m-1)β λ δ T

-λ1+S ln 1- (1+δ Y)

-λ -λ         1- (1+δ Y) 1+T ln 1- (1+δ Y)

− −
− −

−

         
        

−

−

−

  
      

   
⋅       
   

∫

λ λ

m-2

dy


 
  

                                                                  (2.4) 
and the theorem follows on combining (2.4). 
Corollary 1: In the case when 1 2β =β =β, say,  

1 2λ =λ =λ,  say, and 1 2δ =δ =δ , say 
j+1m-2

j

j=0

in-1
i

i=0

(n-1)!(m-1)! S1- (-1) ; S>T,
(n+j)!(m-j-2)! T

P̂=
(n-1)!(m-1)! T1- (-1) ; S<T.

(n-i-1)!(m+i-1)! S

  
  

 

  

   

∑

∑
 

REMARK 1: It follows from Theorem 1 that 
2αˆV(α)= 0

n-1
→  as n→ ∞. Thus θ̂  is a consistent 

estimator of α. Since, f̂(x;α,β,λ,δ) , R̂(t)  and P̂  
are continuous functions of consistent 
estimators, they are also consistent estimators. 

3. MLES OF R(t) AND ‘P’ WHEN ALL 
THE PARAMETERS ARE 
UNKNOWN 

 Let 1 2 nX , X , ..., X  be a random sample 
of size n from (1.5). We denote by Θ=(α, β, λ, δ)
, where α, β, λ and δ  are unknown. From (1.5), 
the log-likelihood function is 
 

( )

( ) ( ) ( )

( ){ }

n n

i i
i=1 i=1

n β-λ
i

i=1

lnLΘ|x =nlnα+nlnβ+nlnλ+nlnδ

 -λ+1 ln 1+δx -(β-1)λ 1+δx

              +(α-1) ln 1- 1+δx . 
  

∑ ∑

∑



             (3.1)                    
 

Considering negative log-likelihood, then 
differentiating it with respect to all unknown 
parameters and equating these differential 
coefficients to zero and solving them 
simultaneously, let α,  β , λ and δ    be the MLES 
of α,  β , λ and δ , respectively. 
            The following lemma provides the MLE 
of f(x;α,β,λ,δ)  at a specified point ‘x’. 
Lemma 3: The MLE of f(x;α,β,λ,δ)  at a 
specified point ‘x’ is 

β-1

α-1β

-(λ+1) -λf(x;α,β,λ,δ)=αβλδ(1+δx) (1+δx)

-λ                                         1- (1+δx) .

 
 
 

  ⋅   
   





      



 

Proof: The proof follows from (1.5) and one-to-
one property of the MLES. 

In the following theorem, we derive the 
MLE of R(t). 
Theorem 4: The MLE of R(t)  is given by

( ){ }
αβ

-λ
R(t)=1- 1- 1+δx .

 
 
  




  

Proof: Using Lemma 3 and one-to-one 
property of the MLES, we get 

t

R(t)= f(x;α,β,λ,δ)dx
∞

∫       

     
{ }β-λ

1
α-1

1- (1+δt)

=α u du
 
 
  

∫








                                

and the theorem follows.                       
Corollary 2: For the case when β, λ and δ  are 
known MLE of R(t) is given by 

( ){ }
αβ-λR(t)=1- 1- 1+δx . 

  



       

Proof:  For known β, λ and δ , MLE of 
f(x;α,β,λ,δ)  at a specified point ‘x’ is

{ }
{ }

β-1

α-1β

-(λ+1) -λf(x;α,β,λ,δ)=αβλδ(1+δx) (1+δx)

-λ                                         1- (1+δx) . 
⋅  
 



 

   (3.6)   
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From the arguments similar to those adopted 
in proving Theorem 4 and (3.6), corollary 
directly follows. 

In the following theorem, we obtain the 
MLE of ‘P’. 
Theorem 5: The MLE of ‘P’ is given by 

( ){ }

( )

2
2

2
1

1

1
1

αβλ1 -1/λ1/β1
1 1 2

0

α -1β

P=α 1- 1+δ δ -1+ 1-v

                                                       1-v dv,

−

      
           

⋅

∫









  
 

where ( ) ( )1 1 1 1 2 2 2 2α ,β ,λ ,δ and α ,β ,λ ,δ        are the 

MLES based on ( )1 2 nx= x , x , ..., x  and 

( )1 2 my= y , y , ..., y ,  on X and Y, respectively. 
Proof: Using Lemma 3, Theorem 5 and the 
one-to-one property of the MLES, we have 

1 1 1 1 1 2 2 2 2 2
y=0 x=y

P= f (x;α ,β ,λ ,δ )f (y;α ,β ,λ ,δ )dxdy
∞ ∞

∫ ∫    

 2 2 2 2 2 1 1 1 1 1
0

= R (x;α ,β ,λ ,δ )f (x;α ,β ,λ ,δ )dx
∞

∫                

and the theorem holds. 
Corollary 3: For the case when β, λ and δ  are 
known MLE of ‘P’ is given by

( ){ }

( )

222
11

1
1

αβλ1 -1/λ1/β1
1 1 2

0

α -1β

P=α 1- 1+δ δ -1+ 1-v

                                                         1-v dv,

−
               

⋅

∫


 
 

where 1 2α and α   are the MLES based on 

( )1 2 nx= x , x , ..., x  and ( )1 2 my= y , y , ..., y ,  on X 
and Y, respectively. 
REMARKS 2:  

(i) In the literature, the researchers have 
dealt with the estimation of R(t)  and ‘P’, 
separately. If we look at the proof of 
Theorems 2, 3, 4 and 5, we observe that 
the UMVUE and MLE of the sampled pdf 
is used to obtain the UMVUES and 
MLES of R(t)   and ‘P’, respectively. 
Thus we have established 
interrelationship between the two 
estimation problems. Moreover, in the 
present approach, one does not require 
the expressions of R(t) and ‘P’. 

(ii) Since the UMVUES and MLES of 
powers of α are obtained under same 
conditions, we compare their 
performances. For q = -1 the UMVUE 
and MLE of α are, respectively 

( )( ) ( )( )-1 -1α̂= n-1 -T  and α= n -T . For these 
estimators,

( ) ( )
( ) ( )

2 2 2nˆV =  and V = .2n-2 n-1 n-2

α α
α α

 

Thus, 

( ) ( ) ( )
( )( )

2n-1 2ˆV -V = >0.
n-1 n-2

α α α  

       Thus, the UMVUE of α is more efficient 
than its MLE. Similarly, we can            compare 
the performances of these estimators for other 
powers of α.  

4. NUMERICAL FINDINGS 
 In order to verify the result obtained in 
remark 2 (ii), we have calculated variances of 
α̂ and α,  when the other parameters are known, 
for samples of sizes n = 5, 10, 20, 30 and 50 
corresponding to α = 0.20(0.4)3.40. These 
results are reported in Table 1. 

Table 7.1. 

n 5 10 20 30 50 

α ˆv(α)  v(α)  ˆv(α)  v(α)  ˆv(α)  v(α)  ˆv(α)  v(α)  ˆv(α)  v(α)  

0.20 0.0133 0.0208 0.0050 0.0062 0.0022 0.0025 0.0014 1.1986 8e-04 9e-04 

0.60 0.1200 0.1875 0.0450 0.0556 0.0200 0.0222 0.0129 0.0138 0.0075 0.0078 

1.00 0.3333 0.5208 0.1250 0.1543 0.0556 0.0616 0.0357 0.0382 0.0208 0.0217 

1.40 0.6533 1.0208 0.2450 0.3025 0.1089 0.1207 0.0700 0.0749 0.0408 0.0425 

1.80 1.0800 1.6875 0.4050 0.5000 0.1800 0.1994 0.1157 0.1238 0.0675 0.0703 

2.20 1.6133 2.5208 0.6050 0.7469 0.2689 0.2979 0.1729 0.1850 0.1008 0.1050 

2.60 2.2533 3.5208 0.8450 1.0432 0.3756 0.4161 0.2414 0.2584 0.1408 0.1466 

3.00 3.0000 4.6875 1.1250 1.3889 0.5000 0.5540 0.3214 0.3440 0.1875 0.1952 

3.40 3.8533 6.0208 1.4450 1.7840 0.6422 0.7116 0.4129 0.4418 0.2408 0.2508 
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In order to verify the consistency of the 
estimators obtained, we have drawn sample of 
sizes n = 30 from (1.5), with 
α = 2, β=4, λ=1 and δ = 2 . In Fig. 3, we have 

plotted ˆf(x;α,β,λ,δ), f(x;α,β,λ,δ) and f(x;α,β,λ,δ) ,  

respectively, corresponding to this sample. We 
conclude from Fig. 3 that curves of 
f̂(x;α,β,λ,δ) and f(x;α,β,λ,δ)  overlap to the curve of 
f(x;α,β,λ,δ)  for n=30. This justifies the 
consistency property of the estimators. 

Fig. 3: Curves of ˆf(x;α,β,λ,δ), f(x;α,β,λ,δ) and f(x;α,β,λ,δ).

 

In order to demonstrate the application 
of the theory developed in Section 3, we 
generated the following sample of size n=30 
from (1.5) for α=2.0, β=4.0, λ=1.0 and δ=2.0.  
0.0135, 0.0475, 0.0501, 0.0547, 0.0562, 
0.0584, 0.0709, 0.0761, 0.0866, 0.0982, 
0.0992, 0.1035, 0.1071, 0.1414, 0.1532, 
0.1594, 0.1907, 0.2085, 0.2514, 0.2827, 
0.2894, 0.2904, 0.3651, 0.3974, 0.3993, 
0.5105, 0.7154, 0.7456, 0.7801, 0.7901. 
From (3.1), we get α=1.838271,  β=3.981124,  
λ=0.945446  and δ=2.089517.  It can be seen that 
-2 ln L= -23.95892, R(0.05) = 0.8995 and 
R(0.45) = 0.8824.  
 In order to obtain the MLE of ‘P’, we 
have generated one more sample of size m=30 
from (1.5) for α=3.5, β=4.0, λ=1.0 and δ=2.0.   

0.0416, 0.0561, 0.0948, 0.1116, 0.1224, 
0.1261, 0.1395, 0.1449, 0.1618, 0.1624, 
0.1762, 0.1762, 0.2039, 0.2061, 0.2267, 
0.2371, 0.2430, 0.2440, 0.2452, 0.3717, 
0.3763, 0.4221, 0.4680, 0.5038, 0.5177, 
0.6136, 0.6253, 0.6744, 0.8615, 1.3240. 
Solving as above, we get α=3.5411221,  
β=3.9888550,  λ=0.9282412,  δ=2.4304312  and -2 ln 
L= -13.97776. Using this population as Y and 
above population as X, we get P = 0.6363636 
and P = 0.6181066. 

For the case when α is unknown but 
β, λ and δ are known, we have conducted 
simulation experiments using bootstrap re-

sampling technique for sample sizes n = 5, 10, 
20 and 50.  The samples are generated from 
(1.5), with α = 2.0, β = 0.5, λ = 1.5 and δ = 0.8. 
For different values of t, we have computed 
R̂(t), R(t) , their corresponding bias, variance, 
95% confidence length and corresponding 
coverage percentage. All the computations are 
based on 500 bootstrap replications and 
results are reported in Table 2. 
 In order to estimate ‘P’, for the case 
when 1 2α and α  are unknown but other 
parameters are known, we have conducted 
simulation experiments using bootstrap re-
sampling technique for sample sizes (n, m) = 
(5, 5), (10, 10), (20, 20), (25, 25), (50, 25) and 
(50, 50). The samples are generated from 
(1.5), with, α  = 1.0, β = β = 2.5, λ  = λ  = 1.51 1 1 1 2  
and 2α = 1.6, 2.6, 4.6 and 6.6.  The computations 
are based on 500 bootstrap replications. We 
have computed P̂, P,  bias, variance, 95% 
confidence length and corresponding coverage 
percentage. The results are presented in Table 
3. 

5. Discussion  
 In the literature, the researchers have 
dealt with the estimation of R(t) and ‘P’, 
separately. If we look at the proofs of 
Theorems 2, 3, 4 and 5, we observe that the 
UMVUE and MLE of the sampled pdf is used 
to obtain the UMVUES and MLES of R(t)  and 
‘P’, respectively. 
 In Table 1, we compared UMVUE and 
MLE of α, keeping α, λ and δ to be constant for 
four-parameter exponentiated generalized 

0
0.5

1
1.5

2
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3
3.5

4
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Lomax distribution. The table shows that 
UMVUE of α is more efficient than MLE of α. 
From table we observe that as we increase the 
sample size variance of estimators of α 
decrease (for both of estimators UMVUE as 
well as for MLE). Table 1 also shows that as 
we increase values of the parameter α, 
variance increases corresponding to both of 
the estimators. 
 With the help of Fig. 3, we justified the 
consistency property of the estimators. From 
Fig. 3, it also clear the UMVUES are more 
close to actual value than MLES. 
 Through Table 2, we compared the 
efficiency of R̂(t) and R(t). Table 2 shows that 
UMVUE of R(t) is more efficient than MLE of 
R(t). It is also clear that as we increase sample 
size Biasness, MSE and Confidence Length 
decreases but on the other hand 
corresponding Coverage Percentage 
increases. These statements are also true for 
the estimators P̂ and P.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Conclusion  
 We obtained UMVUES and MLES of 
parameter(s). UMVUES and MLES of R(t) and 
‘P’ are derived. A comparative study of the two 
methods of estimation is done and we have 
established interrelationship between the two 
estimation problems. Moreover, in the present 
approach, one does not require the 
expressions of R(t) and ‘P’. 
 It is observed that as the sample size 
increases, the average biases and mean 
squared errors decrease for all sets of 
parameters considered here [see Tables 2 and 
3]. 
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Table 2: Simulation results for R(t). 

t 
n 5 10 20 50 
R(t) R̂(t)  R(t)  R̂(t)  R(t)  R̂(t)  R(t)  R̂(t)  R(t)  

0.60 
 

0.9351 0.9199  
-0.0152 
0.003740264 
0.2085  
89.3948 

0.9061  
-0.0290 
0.003300959  
0.1813  
92.1337 

0.9316  
-0.0035 
0.002305881 
0.1838  
90.1795 

0.9252  
-0.0099 
0.002075589  
0.1728  
91.6010 

0.9385  
0.0034 
0.001134942 
0.1274  
91.8912 

0.9352  
1e-04 
0.001054313  
0.1236  
92.2744 

0.9312  
-0.0039 
0.000592152  
0.0994  
93.7588 

0.9325  
-0.0026 
0.0006014892 
0.1009  
93.6797 

0.70 
 

0.9196 0.8914  
-0.0282 
0.006681679 
0.2867  
90.3669 

0.8827  
-0.0369 
0.005327485  
0.2405  
91.9609 

0.9246  
0.0050 
0.002613866 
0.1819  
90.8083 

0.9189  
-7e-04 
0.002241602  
0.1727  
92.1685 

0.9191  
-5e-04 
0.001217573   
0.1300  
92.6667 

0.9164  
-0.0032 
0.001129186  
0.1248  
92.8323 

0.9223  
0.0027 
0.0007801377 
0.1088  
93.9131 

0.9212  
0.0016 
0.000750414  
0.1071  
93.9680 

0.80 
 

0.9039 0.8316  
-0.0723 
0.02126833 
0.4183  
88.2364 

0.8347  
-0.0692 
0.01591361  
0.3585  
89.5269 

0.8968  
-0.0072 
0.004392456 
0.2332  
91.2278 

0.8934  
-0.0105 
0.003767701  
0.2177  
92.1159 

0.9007  
-0.0032 
0.002977223 
0.1959  
92.2869 

0.8990  
-0.0049 
0.002752046  
0.1889  
92.5615 

0.9060  
0.0021 
0.001049364 
0.1225  
93.6905 

0.9052  
0.0013 
0.001009648  
0.1204  
93.7244 

0.90 
 

0.8883 0.8788  
-0.0095 
0.005605081 
0.2729  
91.8301 

0.8721  
-0.0162 
0.003908982  
0.2256  
92.7269 

0.8819  
-0.0064 
0.004433942 
0.2369  
91.9995 

0.8796  
-0.0087 
0.003722797   
0.2180  
92.4491 

0.8867  
-0.0016 
0.002731544  
0.2010  
93.8816 

0.8855  
-0.0028 
0.002498929  
0.1925  
94.0065 

0.8902  
0.0019 
0.0007905776 
0.1067  
93.9069 

0.8897  
0.0014 
0.0007590906  
0.1047  
93.9190 

1.00 0.8729 0.8614  
-0.0115 
0.01406574   
0.3400  
83.4812 

0.8639  
-0.0090 
0.006595676  
0.2847  
91.0036 

0.8691  
-0.0038 
0.004710623 
0.2527  
93.1672 

0.8680  
-0.0049 
0.003921974  
0.2321  
93.4761 

0.8755  
0.0026 
0.001893337 
0.1655  
93.7172 

0.8748  
0.0019 
0.001712915  
0.1577  
93.7658 

0.8742  
0.0013 
0.001170059  
0.1332  
94.1217 

0.8745 
0.0016 
0.00121732 
0.1358  
94.1142 

1.10 0.8578 0.8120  
-0.0458 
0.009230732  
0.3060  
92.7486 

0.8178  
-0.0399 
0.00622321  
0.2488  
92.9063 

0.8664  
0.0087 
0.006022213 
0.2899  
93.4050 

0.8657  
0.0080 
0.005033709  
0.2695  
94.0357 

0.8621  
0.0043 
0.00259252 
0.1928  
94.1945 

0.8620  
0.0043 
0.002354974  
0.1839  
94.2313 

0.8597  
0.0020  
0.00105026 
0.1278  
95.1719 

0.8598  
0.0020  
0.001009774  
0.1253  
95.1754 

1.20 0.8429 0.8345  
-0.0084 
0.02373229 
0.4143  
80.5189 

0.8489  
0.0060 
0.009829836  
0.3463  
90.0176 

0.8407  
-0.0022 
0.008419463 
0.3362  
92.9148 

0.8424  
-6e-04 
0.007046862  
0.3118  
93.3779 

0.8445  
0.0015 
0.003354482 
0.2188  
94.0666 

0.8452  
0.0023 
0.003049492  
0.2088  
94.0984 

0.8444  
0.0014 
0.00138267 
0.1408  
94.1825 

0.8447  
0.0018 
0.001330868  
0.1381  
94.1854 

Here, the first row indicates the estimate, the second row indicates the bias, the third row indicates variance, the fourth row indicates 95% bootstrap confidence 
length and the fifth row indicates the coverage percentage. 
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Table 3: Simulation results for ‘P’. 
1 2(α , α )  (1, 1.6) (1, 2.6) (1, 4.6) (1, 6.6) 

P 0.3846154 0.2777778 0.1785714 0.1315789 
(n, m) P̂  P  P̂  P  P̂  P  P̂  P  
(5, 5) 0.3786 

-0.0060 
0.01179814 
0.3983  
91.3746 

0.3912  
0.0066 
0.009654342  
0.3605  
91.7915 

0.2756 
-0.0021 
0.00564374 
0.2905  
93.3992 

0.2961  
0.0183 
0.005363467  
0.2749  
93.9089 

0.177 
-0.0016 
0.006724384 
0.3054  
89.9674 

0.1974 
0.0188 
0.007080985  
0.3065  
91.0873 

0.1332 
0.0017 
0.002085573 
0.1707  
90.2432 

0.1532 
0.0216 
0.002741058    
0.180 
91.1396 

(10, 10) 0.3803 
-0.0043 
0.006770484 
0.3101  
93.5394 

0.3861 
 0.0015 
0.006166892  
0.2968  
93.6570 

0.2667 
-0.0111 
0.004350609 
0.2493  
93.7909 

0.2762 
-0.0016 
0.004049913  
0.2443  
93.9623 

0.1688 
-0.0098 
0.004009771  
0.2660 
93.7235 

0.1783 
-3e-04 
0.003959255  
0.2678  
94.1629 

0.1324 
8e-04 
0.001335336 
0.1442  
94.3738 

0.1414 
0.0099 
0.001518139  
0.1486  
94.4979 

(20,20) 0.3848 
2e-04 
0.003831629 
0.2327  
93.9806 

0.3875  
0.0029 
0.003681852  
0.2279  
93.9843 

0.2771 
-6e-04 
0.0027125  
0.1960  
93.9572 

0.2816  
0.0039 
0.002672573   
0.1940  
93.9734 

0.1747 
-0.0039 
0.001455662 
0.1525  
94.0237 

0.1795 
9e-04 
0.001454373  
0.1532  
94.1187 

0.1318 
2e-04 
0.0007120453 
0.1063 
94.3780 

0.1361 
0.0045 
0.0007538388  
0.1079  
94.4327 

(25,25) 0.3849 
2e-04 
0.002434507 
0.1923  
94.8644 

0.3871  
0.0025 
0.002358028  
0.1891  
94.8740 

0.2771 
-6e-04 
0.001743998 
0.1624  
94.7293 

0.2808 
0.0030 
0.001722742  
0.1611  
94.7503 

0.1775 
-0.0010 
0.0009275121 
0.1182  
94.5227 

0.1814 
0.0028 
0.0009425864  
0.1187  
94.5524 

0.1380 
0.0065 
0.0006626313 
0.0985  
94.7358 

0.1416 
0.0100 
0.0007342276  
0.0996  
94.7668 

(50,25) 0.3858  
0.0012 
0.002148201 
0.1818  
95.0124 

0.3851 
5e-04 
0.002083882  
0.1792  
95.0139 

0.2709 
-0.0069 
0.001668848 
0.1571  
94.8713 

0.2716  
-0.0062 
0.001628462  
0.1555  
94.8678 

0.1752 
-0.0034 
0.0008704789 
0.1152  
94.9678 

0.1766 
-0.0020 
0.0008588856  
0.1149  
94.9756 

0.1315 
-1e-04 
0.0004882573 
0.0869  
94.9388 

0.1329 
0.0013 
0.0004921131  
0.0871  
94.9468 

(50, 50) 0.3822 
-0.0024 
0.001999618 
0.1769  
95.1724 

0.3834 
-0.0013 
0.001962234  
0.1754  
95.1780 

0.2765 
-0.0012 
0.001498307 
0.1533  
95.2211 

0.2783 
6e-04 
0.00148525  
0.1527  
95.2254 

0.1776 
-9e-04 
0.0007962493 
0.1117  
95.1364 

0.1795 
9e-04 
0.0008000788   
0.1120 
95.1439 

0.1308 
-8e-04 
0.0004820625 
0.0869  
95.0744 

0.1325 
9e-04 
0.0004883238  
0.0875  
95.0824 

Here, the first row indicates the estimate, the second row indicates the bias, the third row indicates variance, the fourth row indicates 95% bootstrap 
confidence length and the fifth row indicates the coverage percentage. 
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