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Abstract: Problem Statement: The four-parameter exponentiated generalized Lomax distribution has been
introduced. The uniformly minimum variance unbiased and maximum likelihood estimation methods are the
way to estimate the parameters of the distribution. In this study we explore and compare the performance of
the uniformly minimum variance unbiased and maximum likelihood estimators of the reliability function
R(t)=P(X>t) and P=P(X>Y) for the four-parameter exponentiated generalized Lomax distribution. Approach: A
new technique of obtaining these parametric functions is introduced in which major role is played by the
powers of the parameter(s) and the functional forms of the parametric functions to be estimated are not
needed. We explore the performance of these estimators numerically under varying conditions.

Keywords: four-parameter exponentiated generalized Lomax distribution, uniformly minimum variance
unbiased estimators (UMVUES), maximum likelihood estimators (MLES), bootstrap method.

1. INTRODUCTION

The reliability function R(t) is defined
as the probability of failure-free operation until
time t. Thus, if the random variable (rv) X
denotes the lifetime of an item, then R(t).
Another measure of reliability under stress-
strength set-up is the probability P(X>Y), which
represents the reliability of an item of random
strength X subject to random stress Y. Many
researchers have considered the problems of
estimation of R(t) and ‘P’ for various lifetime
distributions, like, exponential, gamma,
Weibull, half-normal, Maxwell, Rayleigh, Burr
and others. For a brief review, one may refer to
[14], [11], [26], [3], [18], [6], [19], [5] and others.

Statistical distributions are very useful
in describing and predicting real world
phenomena. Although many distributions have
been developed, there are always rooms for
developing distributions which are either more
flexible or for fitting specific real world
scenarios. As a result, many new distributions
have been developed and studied. For
example, [8] proposed a generalization of the
standard exponential distribution, called the
exponentiated exponential distribution, defined
by the cumulative distribution function (cdf)

FOur ¥(i-e ™ %Ix a,250.

This equation is simply the ath power of the
standard exponential cdf. For a full discussion
and some of its mathematical properties, see

[9].

[8] introduced exponentiated
generalized class of distributions by taking a
continuous cdf G(x), say, as

Foap ¥ |- 1600 ' [0 (1.1)

where a>0 and >0 are two additional shape
parameters and G(x) is known as the baseline

distribution. The probability density function
(pdf) of the new class has the form

F(p Jop (G0 1" kG0 J Jeco,  (1.2)
where g(X) is the pdf corresponding to the cdf
G(X).

The exponentiated generalized family
of distributions (1.2) allows for greater flexibility
of its tails and can be widely applied in many
areas of engineering and biology and it
extends several well-known distributions in the
literature. Note that even if g(x) is a symmetric
distribution, the distribution f(x) will not be a
symmetric  distribution. The two extra
parameters in (1.2) can control both tail
weights and possibly adding entropy to the
center of the exponentiated generalized family
of distributions. In particular, if g(x) and G(x)
represent the pdf and cdf, respectively, of two
parameter Lomax distribution, then

g(%5 35 [rox T (1.3)
and

G(%S F1- [rox T (1.4)
From (1.1), (1.2), (1.3) and (1.4), we get

f(XBA3 JaPAS(1+%) '(Hl)({uax) -x}“"

o (1.5)
.{1-{53@ '7‘} ;},a,ﬁ, 2,0>0

and
ﬁ o
FOa.BAS F [ {I—O—SX) '7‘} };x,a,ﬁ,k,ébo, (1.6)

where f (B8 ) and FOu,BA3 )
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respectively, represents the pdf and cdf of
exponentiated generalized Lomax distribution.

The graphs of exponentiated
generalized Lomax distribution for various
values of a, B, A and & are given in Fig.1. The
figure shows that the density function can take
different shapes for different values of these
parameters.
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Fig. 1: Curves of f(x;a,B,1,0).

Hazard function: The hazard function of
exponentiated exponential-Weibull distribution
using Equations (1.5) and (1.6) is given by

aprd(1+x) 1) { (HBX)_X}B.I
T

o-1
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Hazard functions for various values of a, B, A
and 6 are given in Fig.2.
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Fig.2: Curves of Hazard function.

The purpose of the present paper is
manifold. = We  consider  exponentiated
generalized Lomax distribution. The UMVUES
and MLES of the reliability function R(t) and ‘P’
are derived for the complete sample case. In
order to obtain these estimators, the major role
is played by the UMVUES and MLES of the
powers of parameter(s) and the functional
forms of the parametric functions to be
estimated are not needed. Simulation study is
carried out to investigate the performances of
these estimators. A comparative study of
different methods of estimation is done.

In Section 2, we derive the UMVUES
of the reliability function R(t) and ‘P’ assuming
a to be unknown but other parameters are
known. In Section 3, we obtain MLES of the
reliability function R(t) and ‘P’, when all the
parameters are unknown. In Section 4,
simulation study is performed. In Section 5,
discussion is made. Finally, in Section 6,
conclusions are given.

2. UMVUES OF THE POWERS OF a, R(t)
AND ‘P’ WHEN 3, A AND & ARE
KNOWN

Let X,, X,, .., X, be arandom sample of
size n from (1.5).

Lemma 1: Let S:-i[lé{m} ; '?‘ﬂ Then, S

is complete and sufficient for the distribution
given at (1.5). Moreover, the pdf of S is

o
r'(n)

Proof: From (1.5), the joint pdf of X,, X,, ..., X,

is

h(X, Xy ... 8, B.0,8)=(apAd) "

h(s;a)=

-1
s"ES ; 0<s<oo.

- ENLs
o | @ax) ¢ D x| @.1)

exp(- )

§— 5
= 1-{(115X) '7“}
It follows from (2.1) and Fishers-Neyman

factorization theorem [see Rohatgi (1976, p.
341)] that T is sufficient for the f(x; f. &) Itis

p
easy to see that the rv V:-Zaln[l-{(HBX)')‘} ]

follows 12(2) distribution. Thus, from the well-

known additive property of Chi-square
distribution [see [12]],

i=1
and the result follows. Since the distribution of
T belongs to exponential family, it is also
complete [see [15]].

The following theorem provides the
UMVUES of the powers of a.

-2aS—-2(x§ln[l-{(l*ﬁxi)_x}ﬁj is a X2(2n) rv
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Theorem 1: For qe (-, «) , the UMVUE of of
is
I'(n)
a'=4 T(n-q)
0 ; otherwise.
Proof: From (2.2),

E(as ) [x <2r}) K
_T(n-q - g<n,
2F(n)

oz |-

I'(n-q)

Hence, the theorem follows from Lehmann-
Scheffé Theorem [see [15]].

In the following lemma, we provide the
UMVUE of the sampled pdf (1.5) at specified
point ‘X'.

Lemma 2: The UMVUE of f(x;a,3A,8) at a
specified point ‘X' is

q<n,

or,

f(x;a,B,X,6)=(n-l)B)L6(1-{(1+6X)'*}ﬁ)71(1+6X)’(“”

(8%) -x}ﬁ»lps Th ( f1+5%) _h}ﬁ):|n-2

;-S<In(l-{(IHX) "}B)
Proof: We can write (1.5) as

-1
f(x;a,B,k,6)=[3xa[1_ {(1 +3x)_7‘}ﬁj

-(13%) '(7‘+1)({1+5x) ‘X}B'l 2.2)

st 1]

Using (2 2) Theorem 1 and Lemma 1 of
Chaturvedi and Tomer (2002), UMVUE of
f(x;0,B,2,8) at a specified point ‘X’ is

f(x;a,ﬁ,x,6)=m5 [1_ {(1 +5X)-;L}BJ (1+5x)'(7* 1)

o sl T

= it

-1
:(n-1)[w3s1(1-{(1+5><)'X}ﬁ] (14 D

.{(BX) 'X}Bi{s lnll{(]{+8X) ‘x}ﬁﬂnz
;-s<|n[1-{(st) 'X}B]

and the lemma holds.

In the following theorem, we obtain
UMVUE of R(t).
Theorem 2: The UMVUE of R(t) is given by

é(t)zl{lﬁlm{l-{(h -x}f‘ﬂ“
;-S<In(1-{(ax) x}ﬁJ

Proof: Let us consider the expected value of
the integral f f(x;a,ﬁ,k,é)dx, with respect to S,
t

ie.,

T{Tf(x;a,B,K,S)dx}h(s;a)ds
0Lt
= [[Eo{fxB.1.8)} 1dx

:Tf(xx,ﬁ,x,B)dx

=R(t). (2.3)
We conclude from (2.3) that the UMVUE of
R(t) can be obtained simply by integrating
f(x;o,B,1,8) from t to . Thus, from Lemma 2,

é(t):(n-l)SB}?a 1{(1{@() -X}Bgl 15X) -(A+1)

-{(BX) Mix 1{5 I 1E(1{+5X) 'K}Bﬂ
=(n-1) T (1+2)™2dz
Sllh(l-{i(fh }“j
and the theorem follows.

Let X and Y be two independent rvs
following the families of distributions

f.( B 42,0 ) and f,00 $ 2 D)
respectively. We assume that oy and oy are

unknown but B,,B,, A, A,, 8, and §,are known.
Let Xg, X3,..., Xp be a random sample of size
n from f(x¢ B,1,8) and Y1, Yo,..., Yy be a
random sample of size m from f,(y¢ ) 0 ).

B
Let us denote by S"Z'”{ 5{(,14) - 1} } and

S=-iln{ a{(;n) . } } In what follows, we

In what follows, we obtain the UMVUE
of ‘P.

Theorem 3: The UMVUE of ‘P’ is
given by
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_1P2
1t |{1{(1Z[H(1e5 WhyUn ]J & }

1-(m-1) I

(1)l [-ll:(l-{e ) 1/“1}"‘1716} =

Proof: From the arguments similar to those
adopted in proving Theorem 1, it can be shown
that the UMVUE of ‘P’ is given by

ﬁ’=j iﬁfﬁ(xl S o B S Yy,

w©

= J. IQQ(W) M 40 )f (YA;Q‘ B2 50 )dy

y=0

=1-(m-1)B,A,5, T

maxd 71 e 5 2 e T 0]
R L W

y=0

.[1_{51¥)2 7 }Bﬁr mll-[a{s vy, }BHZ dy

(2.4)
and the theorem follows on combining (2.4).
Corollary 1: In the case when B,=B,=B, say,

M=A,=A, say, and §,=5,=8, say

@ (n)imD (ST
b= 1§(1)'(n+j)!(m.,--2)![TJ T
& (F)m-L (T
! Z(;( 2 (n-i-l)!(m+i-l)![8)’ S<T.
REMARK 1: It follows from Theorem 1 that

2 ~
1 — 0 as n— «. Thus 6 is a consistent

n-1

o
n_
estimator of a. Since, f(x;o.p.\3), R(t) and P

are continuous functions of consistent
estimators, they are also consistent estimators.

V(&)=

3. MLES OF R(t) AND ‘P° WHEN ALL
THE PARAMETERS ARE
UNKNOWN

Let X, X,, .., X, be a random sample
of size n from (1.5). We denote by ©=(a, B, A, 5)
, where q,B,Land 8 are unknown. From (1.5),
the log-likelihood function is

InLO[x_jnina-+ninf+nlni-+nlnd
F )0 (ox YDA D (kox ()
+(a-1)iln[1-{(1+6xi)"}B}.

(3.1)

)P i
1+S7n 1{[1?1[1{(15” yP2ylin2 ]] }
0 bZ

T
o

n-1
YL
1-(m—l)}{l+slln{l—{[l—?[l—{(l—ew yhayir2 ]j } H
0 2

(ma [}{(1% ) 1/&1}"@15} 9{('{ -E'T)ﬂBZ}J;},

Considering negative log-likelihood, then
differentiating it with respect to all unknown
parameters and equating these differential
coefficients to zero and solving them
simultaneously, let & p,%and§ be the MLES
of a, B, A and & , respectively.
The following lemma provides the MLE
of f(x;a,p,A,5) at a specified point ‘x'.
Lemma 3: The MLE of f(x;aB,\0) at a
specified point ‘X' is
~ - ['3_1
f(x;a,B,k,8)=dBkS(1+SX)'(KH){(1-&-8}()')‘}

b <1

Proof: The proof follows from (1.5) and one-to-
one property of the MLES.

In the following theorem, we derive the
MLE of R(t).

Theorem 4: The MLE of R(t) is given by

T
ﬁ(t)ﬂ{l-{(a{ )*}}
Proof: Using Lemma 3 and one-to-one
property of the MLES, we get

ﬁ(t):Tf(m,B,x,S)dx

1
=q I u*'du
{1—{(15() ’}B]
and the theorem follows.
Corollary 2: For the case when B,Land 3 are
known MLE of R(t) is given by

ﬁ(t):l_‘:l_{(ax_ )—L}B}u
Proof: For
f(x;a,BA8) at

known B,Aandd, MLE of

a specified point ‘X is
. Bl
Fx; 0,53 pAS( 1+5x)'(“1){(1+5x)'k}

.H@i@ _X}T

(3.6)
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From the arguments similar to those adopted
in proving Theorem 4 and (3.6), corollary
directly follows.

In the following theorem, we obtain the
MLE of ‘P
Theorem 5: The MLE of ‘P’ is given by

ﬁ:dli 1_{[1+81182 {-H{(I-V)Uﬁl }M Diz FZ

. (1-vBl )&l'l dv,
where  (d,,,,1,,5, ) and (a,,6,.4,.5,) are the
MLES
y=(Y1, Y2, - Y ), ON X and Y, respectively.

Proof: Using Lemma 3, Theorem 5 and the
one-to-one property of the MLES, we have

p=[ i 5 )f (g P 2, )dxdy,

y=0x=y
= [Ro6GB, 1y 8% Buhy,8,)dx
0

and the theorem holds.
Corollary 3: For the case when B, Aand$ are

a2

based on  x=(X,X, ... X,) and

o Ay

known MLE of ‘P° is given by
1 : % B, %2
P=d, [ [1-{(1%;162[-1+{(1-V)1/n1}1’*1D } ]
0
~(1-v“1 )al'l dv,

where 0, and @, are the MLES based on

X=(Xg, X5 0 X, ) @R Y=(Yy, Yoo o Vi), ON X

o Ay

and Y, respectively.

1175

0] In the literature, the researchers have
dealt with the estimation of R(t) and ‘P’,
separately. If we look at the proof of
Theorems 2, 3, 4 and 5, we observe that
the UMVUE and MLE of the sampled pdf
is used to obtain the UMVUES and
MLES of R(t) and ‘P’, respectively.
Thus we have established
interrelationship  between the two
estimation problems. Moreover, in the
present approach, one does not require
the expressions of R(t) and ‘P’.

(i) Since the UMVUES and MLES of
powers of a are obtained under same
conditions, we compare their
performances. For q = -1 the UMVUE
and MLE of a are, respectively
6=(n-1)(-T) "} and 6=(n)(-T) L. For  these
estimators,

2 2.2
V(&):a— and V(&):nz—a. Thus,
2 (1 (n2)

(gD 2
V(ia)-V(ia)=———= 0.
(a) ((x) (n-1)(n-2) >

Thus, the UMVUE of a is more efficient
than its MLE. Similarly, we can compare
the performances of these estimators for other
powers of a.

4. NUMERICAL FINDINGS

In order to verify the result obtained in
remark 2 (i), we have calculated variances of
a and &, when the other parameters are known,

for samples of sizes n = 5, 10, 20, 30 and 50

REMARKS 2. corresponding to a = 0.20(0.4)3.40. These
results are reported in Table 1.
Table 7.1.
n 5 10 20 30 50
a v(a) V(@) v(a) v(@) v(0) v(@) v(0) v(@) v(a) v(@)
0.20 | 0.0133 | 0.0208 | 0.0050 | 0.0062 | 0.0022 | 0.0025 | 0.0014 | 1.1986 | 8e-04 | 9e-04
0.60 | 0.1200 | 0.1875 | 0.0450 | 0.0556 | 0.0200 | 0.0222 | 0.0129 | 0.0138 | 0.0075 | 0.0078
1.00 | 0.3333 | 0.5208 | 0.1250 | 0.1543 | 0.0556 | 0.0616 | 0.0357 | 0.0382 | 0.0208 | 0.0217
1.40 | 0.6533 | 1.0208 | 0.2450 | 0.3025 | 0.1089 | 0.1207 | 0.0700 | 0.0749 | 0.0408 | 0.0425
1.80 | 1.0800 | 1.6875 | 0.4050 | 0.5000 | 0.1800 | 0.1994 | 0.1157 | 0.1238 | 0.0675 | 0.0703
2.20 | 1.6133 | 2.5208 | 0.6050 | 0.7469 | 0.2689 | 0.2979 | 0.1729 | 0.1850 | 0.1008 | 0.1050
2.60 | 2.2533 | 3.5208 | 0.8450 | 1.0432 | 0.3756 | 0.4161 | 0.2414 | 0.2584 | 0.1408 | 0.1466
3.00 | 3.0000 | 4.6875 | 1.1250 | 1.3889 | 0.5000 | 0.5540 | 0.3214 | 0.3440 | 0.1875 | 0.1952
3.40 | 3.8533 | 6.0208 | 1.4450 | 1.7840 | 0.6422 | 0.7116 | 0.4129 | 0.4418 | 0.2408 | 0.2508

IJSER © 2014
http://www.ijser.org



http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-2014 1176

ISSN 2229-5518

In order to verify the consistency of the
estimators obtained, we have drawn sample of
sizes n = 30 from (1.5, with
a=2,p=4,2=1land 5=2. In Fig. 3, we have

plotted f(x:a,B,A.0), f(x;,p.0,8) and fx;o,B,0,5) |

respectively, corresponding to this sample. We
conclude from Fig. 3 that curves of

f(x;0,.,8) and f(x;0,,1,5) overlap to the curve of
f(x;a,p,A,8) for n=30. This justifies the
consistency property of the estimators.

(/

/ﬁ

o 1

2 3

Fig. 3: Curves of T(X;a,B,Ad), f(x;0,B,1,0) and f(x;0,B,4,3).

In order to demonstrate the application
of the theory developed in Section 3, we
generated the following sample of size n=30
from (1.5) for 0=2.0, p=4.0, A=1.0 and 5=2.0.
0.0135, 0.0475, 0.0501, 0.0547, 0.0562,
0.0584, 0.0709, 0.0761, 0.0866, 0.0982,
0.0992, 0.1035, 0.1071, 0.1414, 0.1532,
0.1594, 0.1907, 0.2085, 0.2514, 0.2827,
0.2894, 0.2904, 0.3651, 0.3974, 0.3993,
0.5105, 0.7154, 0.7456, 0.7801, 0.7901.

From (3.1), we get G=1.838271, [=3.981124,
2=0.945446 and §=2.089517. It can be seen that
-2 In L= -23.95892, R(0.05) = 0.8995 and
R(0.45) = 0.8824.

In order to obtain the MLE of ‘P’, we
have generated one more sample of size m=30
from (1.5) for 0=3.5, p=4.0, A=1.0 and 5=2.0.

0.0416, 0.0561, 0.0948, 0.1116, 0.1224,
0.1261, 0.1395, 0.1449, 0.1618, 0.1624,
0.1762, 0.1762, 0.2039, 0.2061, 0.2267,
0.2371, 0.2430, 0.2440, 0.2452, 0.3717,
0.3763, 0.4221, 0.4680, 0.5038, 0.5177,
0.6136, 0.6253, 0.6744, 0.8615, 1.3240.

Solving as above, we get &=3.5411221,

B=3.9888550, 3=0.9282412, §=2.4304312 and -2 In
L= -13.97776. Using this population as Y and
above population as X, we get P = 0.6363636
and P=0.6181066.

For the case when a is unknown but
B, A and & are known, we have conducted
simulation experiments using bootstrap re-

sampling technique for sample sizes n = 5, 10,
20 and 50. The samples are generated from
(1.5), witha=2.0,3 =0.5,A=1.5and 6 = 0.8.
For different values of t, we have computed
Ife(t), R(t), their corresponding bias, variance,
95% confidence length and corresponding
coverage percentage. All the computations are
based on 500 bootstrap replications and
results are reported in Table 2.

In order to estimate ‘P’, for the case
when o,anda, are unknown but other

parameters are known, we have conducted
simulation experiments using bootstrap re-
sampling technique for sample sizes (n, m) =
(5, 5), (10, 10), (20, 20), (25, 25), (50, 25) and
(50, 50). The samples are generated from
(1.5), with, o1=1.0,p1=p1=25,11=rp =15

and ap=1.6,2.6,4.6 and 6.6. The computations
are based on 500 bootstrap replications. We

have computed Is, P, bias, variance, 95%
confidence length and corresponding coverage

percentage. The results are presented in Table
3.

5. Discussion

In the literature, the researchers have
dealt with the estimation of R(t) and ‘P’,
separately. If we look at the proofs of
Theorems 2, 3, 4 and 5, we observe that the
UMVUE and MLE of the sampled pdf is used
to obtain the UMVUES and MLES of R(t) and
‘P’, respectively.

In Table 1, we compared UMVUE and
MLE of a, keeping a, A and & to be constant for
four-parameter  exponentiated generalized
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Lomax distribution. The table shows that
UMVUE of a is more efficient than MLE of a.
From table we observe that as we increase the
sample size variance of estimators of a
decrease (for both of estimators UMVUE as
well as for MLE). Table 1 also shows that as
we increase values of the parameter aq,
variance increases corresponding to both of
the estimators.

With the help of Fig. 3, we justified the
consistency property of the estimators. From
Fig. 3, it also clear the UMVUES are more
close to actual value than MLES.

Through Table 2, we compared the

efficiency of R(t) and R(t). Table 2 shows that

UMVUE of R(t) is more efficient than MLE of
R(t). It is also clear that as we increase sample
size Biasness, MSE and Confidence Length
decreases but on the other hand
corresponding Coverage Percentage
increases. These statements are also true for

the estimators P and P.

6. Conclusion

We obtained UMVUES and MLES of
parameter(s). UMVUES and MLES of R(t) and
‘P’ are derived. A comparative study of the two
methods of estimation is done and we have
established interrelationship between the two
estimation problems. Moreover, in the present
approach, one does not require the
expressions of R(t) and ‘P’.

It is observed that as the sample size
increases, the average biases and mean
squared errors decrease for all sets of
parameters considered here [see Tables 2 and
3]
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Table 2: Simulation results for R(t).

1178

n 5 10 20 50
t R(t) R(t) R(t) R() R() R() R() R(Y) R()
0.60 0.9351 | 0.9199 0.9061 0.9316 0.9252 0.9385 0.9352 0.9312 0.9325
-0.0152 -0.0290 -0.0035 -0.0099 0.0034 1le-04 -0.0039 -0.0026
0.003740264 0.003300959 0.002305881 0.002075589 0.001134942 0.001054313 0.000592152 0.0006014892
0.2085 0.1813 0.1838 0.1728 0.1274 0.1236 0.0994 0.1009
89.3948 92.1337 90.1795 91.6010 91.8912 92.2744 93.7588 93.6797
0.70 0.9196 | 0.8914 0.8827 0.9246 0.9189 0.9191 0.9164 0.9223 0.9212
-0.0282 -0.0369 0.0050 -7e-04 -5e-04 -0.0032 0.0027 0.0016
0.006681679 0.005327485 0.002613866 0.002241602 0.001217573 0.001129186 0.0007801377 0.000750414
0.2867 0.2405 0.1819 0.1727 0.1300 0.1248 0.1088 0.1071
90.3669 91.9609 90.8083 92.1685 92.6667 92.8323 93.9131 93.9680
0.80 0.9039 | 0.8316 0.8347 0.8968 0.8934 0.9007 0.8990 0.9060 0.9052
-0.0723 -0.0692 -0.0072 -0.0105 -0.0032 -0.0049 0.0021 0.0013
0.02126833 0.01591361 0.004392456 0.003767701 0.002977223 0.002752046 0.001049364 0.001009648
0.4183 0.3585 0.2332 0.2177 0.1959 0.1889 0.1225 0.1204
88.2364 89.5269 91.2278 92.1159 92.2869 92.5615 93.6905 93.7244
0.90 0.8883 | 0.8788 0.8721 0.8819 0.8796 0.8867 0.8855 0.8902 0.8897
-0.0095 -0.0162 -0.0064 -0.0087 -0.0016 -0.0028 0.0019 0.0014
0.005605081 0.003908982 0.004433942 0.003722797 0.002731544 0.002498929 0.0007905776 0.0007590906
0.2729 0.2256 0.2369 0.2180 0.2010 0.1925 0.1067 0.1047
91.8301 92.7269 91.9995 92.4491 93.8816 94.0065 93.9069 93.9190
1.00 0.8729 | 0.8614 0.8639 0.8691 0.8680 0.8755 0.8748 0.8742 0.8745
-0.0115 -0.0090 -0.0038 -0.0049 0.0026 0.0019 0.0013 0.0016
0.01406574 0.006595676 0.004710623 0.003921974 0.001893337 0.001712915 0.001170059 0.00121732
0.3400 0.2847 0.2527 0.2321 0.1655 0.1577 0.1332 0.1358
83.4812 91.0036 93.1672 93.4761 93.7172 93.7658 94.1217 94.1142
1.10 0.8578 | 0.8120 0.8178 0.8664 0.8657 0.8621 0.8620 0.8597 0.8598
-0.0458 -0.0399 0.0087 0.0080 0.0043 0.0043 0.0020 0.0020
0.009230732 0.00622321 0.006022213 0.005033709 0.00259252 0.002354974 0.00105026 0.001009774
0.3060 0.2488 0.2899 0.2695 0.1928 0.1839 0.1278 0.1253
92.7486 92.9063 93.4050 94.0357 94.1945 94.2313 95.1719 95.1754
1.20 0.8429 | 0.8345 0.8489 0.8407 0.8424 0.8445 0.8452 0.8444 0.8447
-0.0084 0.0060 -0.0022 -6e-04 0.0015 0.0023 0.0014 0.0018
0.02373229 0.009829836 0.008419463 0.007046862 0.003354482 0.003049492 0.00138267 0.001330868
0.4143 0.3463 0.3362 0.3118 0.2188 0.2088 0.1408 0.1381
80.5189 90.0176 92.9148 93.3779 94.0666 94.0984 94.1825 94.1854

Here, the first row indicates the estimate, the second row indicates the bias, the third row indicates variance, the fourth row indicates 95% bootstrap confidence

length and the fifth row indicates the coverage percentage.
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Table 3: Simulation results for ‘P’.
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(01,02) | (1,1.6) (1, 2.6) (1, 4.6) (1, 6.6)

P 0.3846154 0.2777778 0.1785714 0.1315789

(n, m) P P P P P P P P

(5, 5) 0.3786 0.3912 0.2756 0.2961 0.177 0.1974 0.1332 0.1532
-0.0060 0.0066 -0.0021 0.0183 -0.0016 0.0188 0.0017 0.0216
0.01179814 0.009654342 | 0.00564374 0.005363467 | 0.006724384 | 0.007080985 | 0.002085573 | 0.002741058
0.3983 0.3605 0.2905 0.2749 0.3054 0.3065 0.1707 0.180
91.3746 91.7915 93.3992 93.9089 89.9674 91.0873 90.2432 91.1396

(10, 10) | 0.3803 0.3861 0.2667 0.2762 0.1688 0.1783 0.1324 0.1414
-0.0043 0.0015 -0.0111 -0.0016 -0.0098 -3e-04 8e-04 0.0099
0.006770484 | 0.006166892 | 0.004350609 | 0.004049913 | 0.004009771 0.003959255 | 0.001335336 | 0.001518139
0.3101 0.2968 0.2493 0.2443 0.2660 0.2678 0.1442 0.1486
93.5394 93.6570 93.7909 93.9623 93.7235 94.1629 94.3738 94.4979

(20,20) 0.3848 0.3875 0.2771 0.2816 0.1747 0.1795 0.1318 0.1361
2e-04 0.0029 -6e-04 0.0039 -0.0039 9e-04 2e-04 0.0045
0.003831629 | 0.003681852 | 0.0027125 0.002672573 | 0.001455662 0.001454373 | 0.0007120453 | 0.0007538388
0.2327 0.2279 0.1960 0.1940 0.1525 0.1532 0.1063 0.1079
93.9806 93.9843 93.9572 93.9734 94.0237 94.1187 94.3780 94.4327

(25,25) 0.3849 0.3871 0.2771 0.2808 0.1775 0.1814 0.1380 0.1416
2e-04 0.0025 -6e-04 0.0030 -0.0010 0.0028 0.0065 0.0100
0.002434507 | 0.002358028 | 0.001743998 | 0.001722742 | 0.0009275121 | 0.0009425864 | 0.0006626313 | 0.0007342276
0.1923 0.1891 0.1624 0.1611 0.1182 0.1187 0.0985 0.0996
94.8644 94.8740 94.7293 94.7503 94.5227 94.5524 94.7358 94.7668

(50,25) 0.3858 0.3851 0.2709 0.2716 0.1752 0.1766 0.1315 0.1329
0.0012 5e-04 -0.0069 -0.0062 -0.0034 -0.0020 -1e-04 0.0013
0.002148201 | 0.002083882 | 0.001668848 | 0.001628462 | 0.0008704789 | 0.0008588856 | 0.0004882573 | 0.0004921131
0.1818 0.1792 0.1571 0.1555 0.1152 0.1149 0.0869 0.0871
95.0124 95.0139 94.8713 94.8678 94.9678 94.9756 94.9388 94.9468

(50, 50) | 0.3822 0.3834 0.2765 0.2783 0.1776 0.1795 0.1308 0.1325
-0.0024 -0.0013 -0.0012 6e-04 -9e-04 9e-04 -8e-04 9e-04
0.001999618 | 0.001962234 | 0.001498307 | 0.00148525 | 0.0007962493 | 0.0008000788 | 0.0004820625 | 0.0004883238
0.1769 0.1754 0.1533 0.1527 0.1117 0.1120 0.0869 0.0875
95.1724 95.1780 95.2211 95.2254 95.1364 95.1439 95.0744 95.0824

Here, the first row indicates the estimate, the second row indicates the bias, the third row indicates variance, the fourth row indicates 95% bootstrap
confidence length and the fifth row indicates the coverage percentage.
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